REPUBLIC OF RWANDA

MINISTRY OF EDUCATION NATIONAL CURRICULUM DEVELOPMENT CENTER (NCDC)

P.O.BOX. 608 KIGALI

www.ncdc.gov.rw

ADVANCED LEVEL MATHEMATICS CURRICULUM FOR SCIENCE COMBINATIONS

Kigali, April 2010

LIST OF PARTICIPANTS

- 1. GAHIMA Charles : Director General ,NCDC ;Coordinator
- 2. RUTAKAMIZE Joseph : Director of science and Artistic Unit, NCDC ;Supervisor
- 3. NZAHUMUNYURWA Isidore: Mathematics Curriculum Developer, NCDC ;Team leader
- 4. KAYINAMURA Aloys : Mathematics Curriculum Developer, NCDC ;Vice Team leader and Secretary
- 5. NYIRANDAGIJIMANA Anathalie: Curriculum Developer in charge of Pedagogical Norms, NCDC
- 6. UWIRINGIYIMANA Marthe: Mathematics Curriculum Developer- NCDC
- 7. NSEKANDIZI Manassé: Inspector of Mathematics and Physics- IGE
- 8. NSENGIMANA Jean Pierre: Mathematics Specialist RNEC
- 9. UWAMARIYA Eugenie : Mathematics Teacher Ecole des Sciences BYIMANA
- 10. NIYIKORA Sylivere :Mathematics Teacher Collège Adventiste de GITWE
- 11. BIBUTSA Damien: Mathematics Teacher Ecole des Sciences MUSANZE
- 12. NIKWIGIZE Firmin : Mathematics Teacher Ecole Secondaire S^t Vincent MUHOZA

TABLE OF CONTENTS

ABLE OF CONTENTS
INTRODUCTION
. GENERAL OBJECTIVES BY THE END OF A' LEVEL
I. LEARNER'S SKILLS TO BE IMPROVED
V. METHODOLOGICAL NOTES
. LIST OF TEACHING AIDS
I. EVALUATION APPROACH
/II. PROGRAMS
PROGRAM FOR SENIOR 4
CHAPTER I: LOGIC
CHAPTER II: ALGEBRA 10
CHAPTER III: ALGEBRA AND PLANE GEOMETRY14
CHAPTER IV: TRIGONOMETRY 16
CHAPTER V: DESCRIPTIVE STATISTICS17
CHAPTER VI: MATRICES OF ORDER 2 AND ORDER 3 18
PROPOSAL OF LESSONS DISTRIBUTION FOR SENIOR 4
PROGRAM FOR SENIOR 5
CHAPTER I: ANALYSIS OR CALCULUS
CHAPTER II: DESCRIPTIVE STATISTICS
CHAPTER III: COMBINATORIAL AND PROBABILITY
CHAPTER IV: SPACE GEOMETRY
PROPOSAL OF LESSONS DISTRIBUTION FOR SENIOR 5
PROGRAM FOR SENIOR 6
CHAPTER II: LINEAR ALGEBRA
CHAPTER III: CALCULUS OR ANALYSIS
CHAPTER IV: DIFFERENTIAL EQUATIONS
CHAPTER V: CONICS
CHAPTER VI: PROBABILITY
PROPOSAL OF LESSONS DISTRIBUTION FOR SENIOR 6
YIII. BIBLIOGRAPHY 43

I. INTRODUCTION

After completing the curriculum of Mathematics for ordinary level, the curriculum of Mathematics for advanced level comes for capacity building of students in science combinations: MCB (Mathematics-Chemistry-Biology),MPG (Mathematics-Physics-Geography), MPC (Mathematics-Physics-Computer Sciences), MEG (Mathematics-Economics-Geography), MCE (Mathematics-Computer Science-Economics) and PCM (Physics-Chemistry-Mathematics). This curriculum is the revision of the curriculum of Mathematics for advanced level, edition 1999 and deals specifically with logic, trigonometry, analysis, algebra, geometry, statistics and probability. The chapters are developed in a logical progressive sequence enabling the learner to have a good comprehension of the subject matter.

This Mathematics curriculum is prepared in a format which helps teachers to teach a particular topic effectively. The structure of each chapter is presented in three columns:

- Specific objectives;
- Contents
- Suggested Teaching and Learning Activities;

At the end of detailed content of each grade, there is a proposal of lesson distribution.

To avoid the areas of Mathematics to be continually seen as separate and learners acquiring concepts and skills in isolation, Mathematics is linked to everyday life and experiences in and out of school. Learners will have the opportunity to apply Mathematics in different contexts, and see the relevance of Mathematics in daily life.

This curriculum also helps learners to use ICT tools to support the mastery and achievement of the desired learning outcomes. Technology used in the teaching and learning of Mathematics, for example calculators, are to be regarded as tools to enhance the teaching and learning process and not to replace teachers.

II. GENERAL OBJECTIVES BY THE END OF A' LEVEL

After the completion of advanced level secondary education, science combinations (PCM, MCB, MPC, MPG, MCE, and MEG) learner should be able to:

- 1. Develop clear, logical, creative and coherent thinking;
- 2. Master basic mathematical concepts and to use them correctly in daily life problem solving;
- 3. Express clearly, comprehensibly, correctly and precisely in verbal and/or in written form all the reasons and calculations leading to the required result whenever finding a solution to any given exercise;
- 4. Master the presented mathematical models and to identify their applications in the learner's environment;
- 5. Arouse learner's mathematical interest and research curiosity in theories and their applications;
- 6. Use the acquired mathematical concepts and skills to follow easily higher studies (Colleges, Higher Institutions and Universities);
- 7. Use acquired mathematical skills to respect human rights;
- 8. Use acquired mathematical skills to develop work spirit, team work, self-confidence and time management without supervision;
- 9. Use ICT tools to explore Mathematics (examples: calculators, computers, mathematical software,...).

III. LEARNER'S SKILLS TO BE IMPROVED

While teaching, the teacher should make sure that the skills listed below are developed for each topic in each grade through teaching and learning activities.

Skills	Main learning activities
1. ICT skills as tools for learning	• Using computers and projectors in presenting individual or group activities
	Using calculators in operations
2. Communication skills	• Discussion in group, oral and writing presentations of findings (results),
	Using mathematical language in presenting word problems
3. Individual skills	• Organize individual research (in the library) in a given time
	• Organize individual activities (exercises, homework, test,) in a given time
4. Critical and logical thinking skills	Using formulae and theorems to solve problems
	• Relating the solution of a problem to the real world
5. Critical and interpretation skills	• Collecting data, analyzing data, synthesizing data, interpreting data and presenting data by
	using tables, charts, diagrams, graphs,
6. Group learning skills and Practical skills	Organization of group activities
	Following instructions in solving problems
7. Creative and innovation skills	Activities of demonstration and generalization
8. Higher cognitive skills	Various activities requiring high order thinking
9. Social skills	Working in groups
10. Discernment/evaluation of information	Self evaluation activities (exercises with final answers)
skills	
11. Problem solving skills	Activities related to daily events (economic growth, productivity,)
12. Motivation and self confidence skills	Activities related to the use of Mathematics in real life

IV. METHODOLOGICAL NOTES

The use of teaching resources is crucial in guiding learners to develop mathematical ideas.

Teachers should use real or concrete materials to help learners gain experience, construct abstract ideas, make inventions, build self confidence, encourage independence and inculcate the spirit of cooperation.

In order to assist learners in having positive attitudes and personalities towards Mathematics, confidence and thinking systematically have to be involved into the teaching and learning process. Good moral values can be cultivated through suitable contexts. Learning in groups should be emphasized to help learners to develop social skills, encourage cooperation and build self confidence. The element of patriotism should also be developed through the teaching and learning process in the classroom using examples.

Various teaching strategies and approaches such as direct instruction, discovery learning, investigation, guided discovery or other methods must be incorporated. Among the approaches that can be given consideration include the following:

- Learner-centered learning;
- Different learning abilities and styles of learners (individualization);
- Usage of relevant, suitable and effective teaching materials;
- Formative evaluation to determine the effectiveness of teaching and learning process.

The choice of a suitable approach will stimulate the teaching and learning environment inside or outside the classroom. The considered suitable approaches include the following:

- Cooperative learning;
- Contextual learning;
- Mastery learning;
- Constructivism.

In this curriculum, suggested various exercises in all chapters may be done in groups or individually.

In implementation of this curriculum, some activities to be done should be related to the main courses (core subjects) of each combination in order to establish the relationship between Mathematics and other subjects.

Examples:

- In MCE (Mathematics, Computer Sciences and Economics) some given activities in statistics, in functions, in sequences,... should be related to Economics.
- In MPG, (Mathematics, Physics and Geography) some given activities in statistics, in logic, in functions,... should be related to Physics or Geography.

V. LIST OF TEACHING AIDS

- 1. Geometric instruments:
 - Ruler,
 - Compass,
 - Protractor,
 - T-square
- 2. Graph paper, Flip chart, wall Charts, ...
- 3. Calculators , computers and Interactive multimedia content
- 4. Cubic die

VI. EVALUATION APPROACH

Evaluation or assessment has to be planned and carried out as a part of the classroom activities. Different methods of assessment can be conducted. These may be in the form of assignments, oral questioning and answering, observations and interviews. Based on the given responses, teachers can rectify learners' misconceptions and weaknesses and also improve his/her own teaching skills. Teachers can then take subsequent effective measures in conducting remedial and enrichment activities in upgrading learners' performances.

VII. PROGRAMS

PROGRAM FOR SENIOR 4

GENERAL OBJECTIVES BY THE END OF SENIOR FOUR

At the end of senior 4 the learner should be able to:

- 1. Utilize correctly vocabularies and symbols of mathematical logic in different demonstration methods;
- 2. Solve algebraically and graphically given problems by applying properties of operations in the field of real numbers;
- 3. Use algebra and vectors in solving problems related to plane geometry;
- 4. Use the trigonometric concepts and formulas in solving problem related to trigonometry;
- 5. Determine and interpret the dispersion parameters of statistical series in one variable;
- 6. Carry out different operations on matrices of order 2 and order 3

CHAPTER I: LOGIC

- Duration: 14 Periods
- **General objective**: At the end of this chapter the learner should be able:

To utilize correctly vocabularies and symbols of mathematical logic in different demonstration methods.

Specific objectives	Contents	Suggested teaching and learning activities
At the end of the unit the learner will be able :	1. Logic	
 To use correctly propositions to determine whether a given sentence is a mathematical statement using definition To determine whether a given statement is true or false To write the negation of a given proposition 	 1. 1.Generalities: Propositions Truth table of a proposition Negation of a proposition 	 A statement is also called a Proposition The teacher should lead learners to determine whether a given sentence is a mathematical statement through different examples The teacher should give learners various exercises to construct the truth table of propositions Through various exercises, use the word "not" or "no" and their symbols to change a true statement into a false statement and vice versa

				-	
-	To form a compound statement from two simple statements by using the conjunction "and "	1.2	2.Logic of propositions :	—	Help learners to discuss in groups using logical connectives "or": "and"
-	To determine the truth value of the compound statement	-	Logical connectives and their properties:	_	Lead learners to differentiate the use of "If <i>n</i> , then <i>a</i> " and " <i>n</i> if and only if <i>a</i> "
	succhent		disjunction		through various exercises
-	To form a compound statement from two simple		 implication 	—	Make sure that the students are able to
	statements by using the disjunction "or"		• equivalence		identify whether a proposition is a
-	To determine the truth value of the compound	—	Truth tables of propositions including		tautology or a contradiction through
	statement		connectives		different exercises
-	To construct mathematical statements by using	-	Morgan's Laws	—	Lead learners to write statements
	implication sign (\Rightarrow) .				involving universal and existential
-	To determine the converse of a given implication	—	Tautology		quantifiers using mathematical symbols
	and determine whether it is true or false.	—	Propositional forms in one or several		through various exercises
-	To apply correctly Morgan's law		variables		
-	To determine whether a statement is a tautology or	-	Referential of a propositional form		
	not.	—	Universal quantifier (\forall)		
-	To determine if a statement is true or false using	-	Existential quantifier (\exists)		
	correctly quantifiers (\forall) and (\exists)	-	Negation of propositions including quantifiers.		

CHAPTER II: ALGEBRA

- Duration: 84 Periods
- General objective: At the end of this chapter the learner should be able: To solve algebraically and graphically given problems by applying properties of operations in the field of real numbers.

Specific objectives	Contents	Suggested teaching and learning activities
At the end of the unit the learner will be able :	 Algebra Sets of numbers and their structures 	
- To carry out correctly the operations in sets of	2.1.1. Revision on sets of numbers :	 The teacher should emphasize on inclusion of sets of numbers
numbers.	N:Natural numbers , Z: integers, Q :rational numbers, R : real numbers :	$\subset \subset \subset$ and give concrete examples to explain the insufficiency of

	•	
	Operations on these sets of numbers.	 each set All activities to be done should verify properties in operations: closed, commutative, associative and distributive properties,
 To factorize polynomials by using different methods To simplify algebraic expressions and function 	2.1.2. Polynomials : factorization, expansion of operations on fractional algebraic expressions and functions	 The teacher should prepare different and various exercises involving different methods of factorization such as: common factor method, grouping method, Horner's method and use of identities. Before adding or subtracting algebraic fractions ensure that the denominators are the same using Lowest Common Multiple (LCM)
 To determine if a set with internal composition law is a GROUP, To determine if a set with two composition laws is RING, or a FIELD To determine if the set of real numbers with two composition laws is a vector space 	 2.1.3. Structures: Groups, Rings and Fields Internal composition law, group, ring and field External composition law and structure of a real vector space 	 Organize group activities to prove if a given set with internal/external composition laws is a group, a ring or a field using their properties
 To apply properties of the absolute value. To simplify algebraic expression using properties of indices and radicals. 	 2.1.4. Set of Real numbers : -absolute value and its properties: absolute value of a product, of a quotient, of a sum and of a difference Indices or powers, and radicals (surds) : integer indices or integer powers and square roots the nth root of a positive real 	 The teacher should prepare various exercises on absolute value
	number and its properties • fractional indices and their properties	

 To determine the logarithm of real number in base 10 by applying properties of logarithm To simplify logarithmic expressions to the simplest form To solve simple equations involving logarithms 	 logarithm to the base 10: definition, properties and their applications 	 The teacher should give examples of application of logarithm in real life While solving equations involving logarithms it is better to determine the domain of a solution
 To solve equations and inequations of the first degree involving one unknown To solve and discuss parametric equations and inequations involving one unknown 	 2.2. Equations, inequations and quadratic functions 2.2.1. Equations, inequations and systems of the first degree in R Solution of equations and inequations involving one unknown discussion of parametric equations and inequations involving one unknown Solution of equations and inequations of the form : A.B = 0 A.B ≤ 0, A.B ≥ 0, A.B ≤ C, A.B ≥ C A.B ≤ 0, A.B ≥ 0, A.B ≤ C, A.B ≥ C 	 The teacher should make revision on intervals Encourage students to give a solution of inequations in form of intervals and represent it graphically To emphasize the use of sign table while solving inequations
- To solve simultaneous equations in two unknowns	 Where A,B,C are binomials of first degree in one unknown Solutions of simultaneous equations in two unknowns using different methods: substitution, elimination, graphical representation ,linear combination, 	

National Curriculum Development Centre (NCDC), Kigali 2010

 To solve system of equations in three unknowns To represent graphically a solution of inequations and simultaneous inequations in two unknowns. To solve problems involving a system of two or three equations 	 crammer's method Solution of system of equations involving three unknowns using linear combinations and substitution method Solutions of system of homogeneous equations Graphical solution of inequations and simultaneous inequations in two unknowns. Word problems involving three and two unknowns 	 Give various exercises to solve systems of equations by using the acquired methods.
 To identify the quadratic equations with one unknown To factorize a quadratic expression To solve the quadratic equations To determine the Sum and product of roots of quadratic equations To study the Sign of ax² + bx + c To solve the quadratic inequations To solve the quadratic equations 	 2.2.2.Quadratic equations and inequations: Definition of a quadratic equation Factorization of ax² + bx + c Solution of quadratic equations ax² + bx + c = 0, Sum and product of roots of quadratic equations Sign of ax² + bx + c Solution of quadratic inequations Examples of equations reducing to quadratic equations: biquadratic equations: biquadratic equations and simple irrational equations Problems leading to quadratic equations 	- lead learners to use the expression $ax^{2}+bx+c=a\left[(x+\frac{b}{2a})^{2}-\left(\frac{b^{2}-4ac}{4a^{2}}\right)\right]$ for determining the solution of quadratic equation - The teacher should give various exercises involving the use of sum and product of roots of quadratic equations - Emphasize the role of sign table in solving quadratic inequations
– To sketch the quadratic function graph	 2.2.3.Quadratic functions Definition Graphical representation of quadratic function 	 To plot, teacher should help learners to determine the concavity by considering the sign of <i>a</i>, vertex, axis of symmetry and intersection with axes

CHAPTER III: ALGEBRA AND PLANE GEOMETRY

- Duration: 35 Periods
- General objective: At the end of this chapter the learner should be able: To use algebra and vectors in solving problems related to plane geometry

Specific objectives	Contents	Suggested teaching and learning
 At the end of the unit the learner will be able : To determine the sum of vectors and the product of a vector by a real number. To verify that (R, V, +) and (R, R²,+) are vector spaces. 	 3. Algebra 3.1.Vector Space of real numbers Revision on vectors in Cartesian plane : addition of vectors and multiplication of vectors by a real number 	 Emphasize the properties of basis of a vector space
 To verify if a given vector is a linear combination of other vectors To differentiate linear dependent vectors from linear independent vectors 	 The vector space (R, V, +) and the vector space (R, R²,+) 	
 To determine the basis of a vector space and its dimension To determine the image of vectors by using a linear transformation 	 Linear combination of vectors linear dependent vectors linear independent vectors generating set of vector space basis of a vector space dimension of a vector space linear transformations: 	 Various exercises on linear dependent and independent vectors are required Make a distinction among the different types of linear transformation
 To prove that (R, V, +) and (R, R², +) are isomorphic vector spaces. 	 definition examples: enlargement, parallel projection, identical application, null application isomorphism between the vector spaces (R, V, +) and (R, R², +) 	Establish a mapping from $(\mathbf{R}, \mathbf{V}, +)$ to $(\mathbf{R}, \mathbf{R}^2, +)$ and prove that this mapping is linear and bijective.
 To calculate the Scalar product of two vectors To determine the magnitude of a vector 	 3.2. Euclidian vector space : Scalar products or dot product: definition, 	 Requirement of use of trigonometric concepts

 To establish the parametric and Cartesian equations of a straight line To apply the scalar product to solve problems. To establish the parametric and Cartesian equations of a circle 	 vector notation properties : commutative, bilinear, positive modulus or magnitude (length) of a vector Expression of \$\vec{u}.\vec{v} = \vec{u} . \vec{v} \cos t\$, where t is the angle between \$\vec{u}\$ and \$\vec{v}\$ Unit vector Coordinates of a point Lines in a plane: parametric and Cartesian equations of a straight line conditions for two lines to be parallel or perpendicular Application of scalar product: relations in a triangle the median theorem distance between two points distance of a point from a straight line Equations(parametric and Cartesian) of a circle 	 The teacher should prepare various exercises on relations in a triangle the median theorem distance between two points distance of a point from a straight line The use of geometrical instruments by the teacher and by the learners is recommended Prepare problems on determination of parametric and Cartesian equations To visualize some concepts, the teacher should use drawings

CHAPTER IV: TRIGONOMETRY

- Duration: 35 Periods
- **General objective**: At the end of this chapter the learner should be able:

To use the trigonometric concepts and formulas in solving problem related to Trigonometry

Specific objectives	Contents	Suggested teaching and learning activities
 At the end of the unit the learner will be able : To express the angles in different units of measurements. 	 4. Trigonometry 4.1. Revision on Angle and its measurements: degree, grade, radians 	 Exercises leading to conversion of angle measurements
 To represent a given angle in a Cartesian plane To locate the angle in a trigonometric circle. To define sine, cosine, tangent and cotangent of any oriented angle. To verify trigonometric identities using fundamental formula To represent graphically the sine , cosine and tangent of an angle To represent graphically the trigonometric functions by using coordinates To apply trigonometric ratios to solve problems related to the right angled triangle and any other triangle. 	 4.2.The trigonometric circle The sine and cosine of an oriented angle in1st, 2nd, 3rd, and 4th quadrants The fundamental formula sin² x + cos² x = 1 and its applications The tangent and cotangent of an oriented angle and its graphical interpretation Definition of secant and cosecant of an oriented angle Sine, cosine, tangent and cotangent of opposite, complementary and supplementary angles Simple graphical representation of trigonometric functions by using coordinates 	 Use trigonometric circle to determine the sine, cosine, tangent and cotangent of an oriented angle Using basic identities and fundamental trigonometric formulae in various exercises Use of scientific calculator to calculate the sine, cosine, tangent and cotangent of a given angle Plot graphs of trigonometric functions using coordinates. The teacher should help learners to make emphasis on the sine, cosine, tangent and cotangent and cotangent of principal angles (0°, 30°, 45°, 60°, 90°) Various exercises on solving trigonometric equations and inequations using transformation formulae are required

_	To use addition formulae, double angle (duplication)	 4.3. Trigonometric ratios Trigonometric ratios in a right angled triangle Trigonometric ratios in any other triangle Solution of right angled triangle 	
	trigonometric expressions	and any other triangle	
		 4.4.Transformation formulae Addition formulae Double angle (duplication) formulae Simpson's formulae 	
_	To solve problems related to trigonometric equations and inequations.	 4.5. Trigonometric equations and inequations Basic equations and inequations Equations and inequations reducing to basic equations and inequations 	

CHAPTER V: DESCRIPTIVE STATISTICS

- Duration: 14 Periods
- General objective: At the end of this chapter the learner should be able: To determine and interpret the dispersion parameters of statistical series in one variable

Specific objectives	Contents	Suggested teaching and learning activities
At the end of the unit the learner will be able :	5. Descriptive statistics	
 To calculate and interpret measures of central tendency of statistical data 	5.1.Revision on measures of central Tendency : mean, mode, median and quartiles	 Through various exercises involving data from real life, the teacher should lead learners to determine measures of: central tendency
	5.2. Measures of dispersion	 dispersion

_	To find the measures of dispersion	—	range, inter-quartiles range,	
-	To solve problems involving data representation and	_	mean deviation, variance, standard	- The teacher should motivate learners to
	measures of dispersion		deviation and Coefficient of	use scientific calculators while dealing
			Variation	with statistic data

CHAPTER VI: MATRICES OF ORDER 2 AND ORDER 3

- Duration: 28 Periods
- General objective: At the end of this chapter the learner should be able: To carry out different operations on matrices of order 2 and order 3

Specific objectives	Contents	Suggested teaching and learning
		activities
At the end of the unit the learner will be able:	6. Matrices of order 2 and 3	
– To determine the matrix of a linear transformation	 Matrices of a linear transformation Definition of matrices (based on a linear transformation) 	 Lead learners to form matrices based on a linear transformation Various exercises on addition,
 To carry out operations on matrices 	 Operations on matrices: Addition, subtraction and multiplication of matrices 	subtraction and multiplication of matrices should be given to the learners
	– Determinants of matrices of order	
- To calculate the determinants of matrices of order 2 x 2	2 and order 3	- Exercises focusing on calculation of
and order 3 x 3	Definition	determinant and the system solving
	Calculation and Properties	using inverse of matrices are required
	of determinants	
To solve problems related to a system of 2 or 2 linear	Solution of a system of 2 and 2	
- To solve problems related to a system of 2 or 5 linear	- Solution of a system of 2 and 5	
equations by using matrices	equations using Crammer's rule	
	 Solution of simultaneous equations 	
- To calculate the inverse of a matrix of order 2x2	using matrices	
	– inverses of matrices of order 2	

PROPOSAL OF LESSONS DISTRIBUTION FOR SENIOR 4

First term

Weeks	Topics	Number of periods
1-2	Logic	14
3-4	Revision on sets of numbers and their structures	14
5-6	Polynomials	14
7-8	Set of real numbers	14
9-10	Equations, inequations and systems of the first degree	14
11-12	Revision and Exams	14
Total:12 weeks		84

Second term

Weeks	Topics	Number of periods
1-4	Quadratic equations, inequations and functions	28
5-9	Trigonometry	35
10	Algebra and plane geometry	7
11-12	Revision and Exams	14
Total:12 weeks		84

Third term

Weeks	Topics	Number of periods
1-4	Algebra and plane geometry	28
5-8	Matrices of order 2 and order 3	28
9-10	Statistics	14
11-12	Revision and Exams	14
Total: 12 weeks		84

PROGRAM FOR SENIOR 5

GENERAL OBJECTIVES BY THE END OF SENIOR FIVE

At the end of senior 5 the learner should be able to:

- 1. Study and to represent graphically a numerical function.
- 2. Apply the properties of real numbers (R) in solving problems related to sequences and series.
- 3. Represent graphically and determine the linear adjustment of a given double series
- 4. Solve problems on combinations and permutations
- 5. Apply combinatorial concepts to solve problems related to probability
- 6. Carry out operations in real vector space R^3 to find distances, amplitude of angles, areas and volumes and to establish algebraic equations of straight lines and planes

CHAPTER I: ANALYSIS OR CALCULUS

- Duration: 112 Periods
- **General objectives**: At the end of this chapter the learner should be able:

-To study and to represent graphically a numerical function.

-To apply the properties of real numbers (R) in solving problems related to sequences and series

Specific objectives	Contents	Suggested teaching and learning activities
 At the end of the unit, student will be able : To determine if a given function is odd function, even function, periodic function To find the period of a given function To show if a given function decreases or increases on the interval To determine the domain of different functions 	 1. Analysis 1.1.Numerical functions : Generalities: Neighborhood of a real number: Open intervals with centre <i>a</i>, Relationship between an open interval with centre <i>a</i> and absolute value : (point <i>a</i> not considered is o< x-a < δ where x ∈ I as part of the interval); Definition of a numerical function: examples, parity of a numerical function: odd function, even function and periodic functions, increasing and decreasing functions, domain of definition of a function. 	 The teacher should make revision on intervals before introducing neighborhood of a real number The teacher should prepare various exercises to help learners to master the use of compound concepts in this unit such as: domain of a function, odd function, even function , periodic function, inverse and composition of functions and monotonic function

		-
- To evaluate correctly the given limits	 1.2 Limits : Concept of a limit with examples, Definition of the limit based on the concept of neighborhood, Defining limits by use of "ε and δ" (epsilon and delta) Right hand limits and left hand limits Properties of finite limits, uniqueness of a limit, limit of a constant function, limit of an identity function, conservation of an inequality, sandwich theorem, Operations on limits Extension of the concept of limit: when values of the variable or those of the function tend towards infinity, Indeterminate cases : [∞]/_∞; ⁰/₀; ∞-∞; 0.∞ 	 Before introducing the notation lim f(x) = b the teacher should give examples showing that if x takes values very closed to a then f(x) takes values which are very closed to b It is advisable to develop the definition of limits using ε and δ by illustrating the idea with some simple examples and exercises based on neighborhood The teacher should prepare examples and exercises to help learners to use correctly the definition of limit The teacher should ensure that the limits to be evaluated in exercises help learners while dealing with indicated indeterminate forms.
 To study the continuity of a given function at a given point or a given interval 	 1.3 Continuity : Continuity of a function at a point, discontinuity at a point Continuity of a function on a subset of IR Properties of continuous functions (proofs not required) Operations on continuous functions Theorem of intermediate values Monotonous functions Inverse of a function which is continuous and strictly monotonous by increasing or decreasing Bounded functions: upper bound and lower bound 	 The teacher should help learners to illustrate graphically the discontinuity points of a curve It is better to give various problems on the study of continuity of different functions

	 Maximum and minimum of a continuous function over an open interval] <i>a</i>,<i>b</i> [: properties (proofs not required) 	
 To find the eventual asymptotes of a given function 	 1.4. Asymptotes: Definition: asymptotes on a curve, types of asymptotes, Determination of vertical, horizontal and oblique asymptotes, 	 The teacher should lead learners to illustrate graphically when a straight line is asymptote to a curve The use of limits is required to determine vertical, horizontal and oblique asymptotes through various exercises
 To find the first derivative of a given function using definition To determine derivatives using formulae 	 1.5 .Differentiation : Derivative of a function at a point, Geometric interpretation of a derivative of a function at a point, Kinematical meaning of a derivative: velocity at a time t, Differentiability and continuity of a function, Derivative of a function, Theorems on differentiable functions: derivative of a constant, of a sum, of a product, and a quotient of functions, Differentiation of some important functions: power function, inverse function, composite function, circular functions, parametric functions and implicit 	 The teacher should lead learners to identify geometrical interpretation of derivative of a function at a point While denoting derivatives, the teacher should help learners to be familiar with the notations y' and <u>dy</u> <u>dx</u> The teacher should prepare and give various exercises on differentiation of functions in different forms The teacher should give problems
 To determine the equation of tangent and normal at a point on a curve. To use verify correctly Rolle's theorem and Lagrange's theorem To use correctly Hospital's rule for calculating limits. 	 functions. Successive differentiation, Application of derivative: Tangent and normal at a point of a function Rolle's theorem, Lagrange's mean value theorem and Hospital's theorem (proof not required), Increasing and decreasing functions, 	 with data from real life as application of derivatives emphasizing on the concept of maximum and minimum The teacher should give various exercises concerning the use of Hospital's rule as application of

_	To determine whether a turning point of a given function is a maximum or a minimum point. To solve problems involving maximum or minimum values To study the concavity of a given function and find its inflection points.	 Minimum and maximum points of a function, Concavity, inflection point on a curve by use of the second derivative, 		derivatives
_	To study different functions and sketch their curves.	 1.6.Study of a function and curve sketching Types of functions to consider : Polynomial functions Rational functions x → ax+b/cx+d, (a ≠ 0, c ≠ 0) x → ax²+bx+c/dx+e (a ≠ 0, d ≠ 0) x → ax²+bx+c/dx²+ex+f, (a ≠ 0, d ≠ 0) Irrational functions : functions in square root form and cube root form Functions including one or several absolute values. Circular functions, Inverse trigonometric functions. 		Ensure that each required form of function is sketched through various exercises
_	To use the mathematical induction in demonstrations	 1.7.Sequences : Mathematical induction Numerical sequences 	1	After defining sequences the teacher should lead learners to
_	To determine if a given sequence increases or decreases, converges or not	- General concepts: definitions, increasing sequences, decreasing sequences, operations and order on sequences, convergence of sequences, limits of		give their own examples of sequences
_	To identify characteristics of Arithmetic progressions	 sequences, comparison of 2 sequences Arithmetic sequences : definition, sense of variation, 	_	The teacher should emphasize on

_	To determine by using formula specific terms in arithmetic progressions and the	operations		arithmetic, geometric and harmonic sequences through
	number of terms in arithmetic			various exercises
	progressions.			
_	To find the sum of the first <i>n</i> terms of			
	Arithmetic progressions			
—	To find the value of <i>n</i> , given the sum of			
	the first <i>n</i> terms of Arithmetic			
	progressions			
1	To iterify the state of Co			
-	To identify characteristics of Geometric	- Geometric sequences definition sense of variation	_	The problems to be solved should
	To determine by using formula the	operations		involve real life situations
-	specific terms in geometric progressions	operations		
	and the number of terms in geometric			
	progressions			
_	To find the sum of the first <i>n</i> terms of			
	geometric progressions, of geometric			
	progressions			
_	To find the value of <i>n</i> , given the sum of			
	the first <i>n</i> terms of geometric progressions			
1				
—	To determine the characteristics of			
	harmonic progressions	- Harmonic sequences		
—	Solve problems involving progressions			

CHAPTER II: DESCRIPTIVE STATISTICS

Duration: 21 Periods

General objective: At the end of this chapter the learner should be able:

To represent graphically and to determine the linear adjustment of a given double series

Specific objectives	Contents	Suggested teaching and learning activities
At the end of the unit the learner will be able:	2. Descriptive statistics	
 To draw the scatter diagram of given statistical series in two quantitative variables To determine the linear regression line of a 	 2.1. Double series Statistical series in two quantitative variables: scatter diagram. 	 The teacher should guide learners to suggest different situations involving statistical series in two quantitative variables
given double series. - To calculate a linear correlation coefficient of a given double series	 Linear adjustment: least squares' method, linear correlation and regression line 	 It is advisable to use data from real life while preparing exercises and problems The use of ICT tools is suggested

CHAPTER III: COMBINATORIAL AND PROBABILITY

- Duration: 35 Periods
- **General objective**: At the end of this chapter the learner should be able:
 - To solve problems on combinations and permutations
 - To apply combinatorial concepts to solve problems related to probability

Specific objectives	Contents	Suggested teaching and learning
		activities
At the end of the unit the learner will be	3. Combinatorial and probability	– The teacher should help learners
able :	3.1. Permutations and combinations	to be familiar with factorial
 To solve problems involving factorial 	– Factorial notation	notation and calculations
notation	– Calculation of the number of permutations	through different exercises
– To determine the number of permutations	(arrangements) of n elements taken r at a time.	– By use of examples from real life,
of <i>n</i> different objects taken <i>r</i> at a time.	– Calculation of the number of permutations of n	the teacher should introduce the
 To determine the number 	elements taken n at a time (n!)	concepts of permutations and
– To determine the number of permutations	– Simple combinations,	combinations. It is also advisable

-	of n different objects To determine the number of permutations of n different objects taken r at a time for given conditions To determine the number of combinations of r objects chosen from n different objects. To determine the number of combinations r objects chosen from n different objects for given conditions To use properties of combinations for finding coefficients in Pascal's triangle. To solve problems involving permutations and combinations.	 Calculations of the number of combinations of n elements taken r at a time. Properties of combinations Pascal's triangle 	_	to go out of classroom for visualizing permutation of n elements through different activities The teacher prepares various exercises and problems on permutations and combinations The teacher should help learners to construct themselves Pascal's triangle by use of properties of combinations
_	To apply the binomial formula in different exercise	 3.2.Binomial theorem Binomial theorem : general notation by use of the summation sign (Σ) Properties of binomial coefficients 	_	The teacher should prepare various exercises on application of binomial theorem
	To determine the sample space of an experiment To explain different concepts relating to events To find the probability of different events To determine the probability of an event with an equiprobable sample space. To solve different exercises on conditional probability and independent events To use correctly Bayes's theorem in solving problems	 3.3. Probability Introduction Random experiment Sample space Events: definition, particular cases of events Probability of events: introduction, definition, properties Equiprobability Conditional probability : definition, Independent events and Bayes's theorem 		The teacher should lead learners to deal with random experiments Through various examples and exercises, particular events and their properties are introduced Various exercises on calculation of probability of events are required The teacher should help learners to solve problems involving simultaneous draws, successive draws (with or without replacing), conditional probability, dependent events and to use correctly Bayes's theorem

CHAPTER IV: SPACE GEOMETRY

- Duration: 42 Periods
- **General objective:** At the end of this chapter the learner should be able:

To carry out operations in real vector space \mathbb{R}^3 to find distances, amplitude of angles, areas and volumes and to establish algebraic equations of straight lines and planes

Specific objectives	Contents	Suggested teaching and learning activities
 At the end of the unit the learner will be able: To construct straight lines and planes in space according to various relative positions To construct images of figures under parallel projection in space To verify if R³ has a vector space structure 	 4.Space geometry 4.1.The space E Axioms: Relative positions of lines and planes. Parallel and Orthogonal projections in space 4.2. The vector space E₀. The vector space (R,E, +) Calculations in the vector space(R,E₀, +) The vector space (R, R³,+) or the real vector space R³ Isomorphism between E₀ and R³ 	 The teacher should help learners to identify relative positions of lines and planes by drawings The teacher should help learners to construct images of figures by parallel and orthogonal projections Make revision on abelian group and field Prepare various exercises on vector space R³
 To establish equations of lines and of planes in space. To calculate scalar product of vectors in space To verify orthogonality by use of scalar 	 4.3.Lines and planes in space Equations of lines in space Equations of planes in space 4.4.The scalar product The scalar product in space E_o Properties of the scalar product Norm or magnitude of a vector. 	 Help learners to determine vectorial , parametric and Cartesian equations of line and plane through various exercises Prepare and give various exercises on scalar product and its application
product	 Cosine of a pair of vectors Orthogonality of vectors 	

 To verify the orthogonality of two lines, of a line and a plane and of two planes. To determine the angle between two lines and between two planes. 	 Orthonormal basis in space E_o Scalar product in R³ 4.5.Orthogonality Orthogonal lines Perpendicular lines to a plane Perpendicular planes Parallel planes Distance of a point from a plane Angles between lines and angles between planes. 	 By use of drawings, local materials, illustrate the concepts to be studied in this unit Various exercises are required
 To determine the intersection of two planes To determine the intersection of a line and a plane 	 4.6.Intersection of planes Intersection of two planes Intersection of a line and a plane 4.7. Sphare 	 By use of drawings, local materials, and simple examples illustrate the concepts to be studied in this unit Various exercises involving equations of lines and planes to determine intersection
 To identify the characteristics of a sphere To use correctly the equation of sphere To determine the intersection of a sphere and a plane To determine the intersection of a sphere and a line. 	 4.7. Spnere Definition and equation of a sphere Intersection of a sphere and a plane Intersection of a sphere and a line 	 Establish the equation of sphere, by use of the concept of distance in space Various exercises about sphere
 To determine the cross product of two vectors in space To determine the mixed product of vectors in space. 	 4.8.The vector product or cross product Vector product in space Mixed product of vectors in space. 	 The teacher should help learners to use the right hand rule to illustrate the direction of cross product Various exercises on vector product in space and mixed product of vectors and their applications are required

PROPOSAL OF LESSONS DISTRIBUTION FOR SENIOR 5

First term

Weeks	Topics	Number of periods
1-2	Generalities on numerical functions	14
3-6	Limits and continuity	28
7	Asymptotes	7
8-10	Differentiation	21
11-12	Revision and Exams	14
Total: 12 weeks		84

Second term

Weeks	Topics	Number of periods
1-4	Study of function and curve sketching	28
5-6	Sequences	14
7-10	Space geometry	28
11-12	Revision and Exams	14
Total: 12 weeks		84

Third term

Weeks	Topics	Number of periods
1-2	Space geometry	14
3-5	Descriptive statistics	21
6-10	Combinatorial and probability	35
11-12	Revision and Exams	14
Total: 12 weeks		84

PROGRAM FOR SENIOR 6

GENERAL OBJECTIVES BY THE END OF SENIOR SIX

At the end of senior 6 the learner should be able:

- 1. Utilize the algebraic, trigonometric and exponential forms of a non-zero complex number to solve problems in trigonometry, geometry and in the factorization of polynomials;
- 2. Utilize the definitions and properties of vector space and linear functions to solve problems given in vector space \mathbb{R}^{n} ;
- 3. Study and represent logarithmic and exponential functions and to apply them in other scientific domains;
- 4. Apply Taylor's formula in establishing limited development of the functions with real variables;
- 5. Calculate the integrals of functions and apply them in various domains;
- 6. Solve simple differential equations of 1^{st} and 2^{nd} order with constant coefficients;
- 7. Determine and establish equations of a conic;
- 8. Calculate and interpret the parameters of a random variable.

CHAPTER I: COMPLEX NUMBERS

- Duration: 28 Periods
- **General objective:** At the end of this chapter the learner should be able:

To utilize the algebraic, trigonometric and exponential forms of a non-zero complex number to solve problems in trigonometry, geometry and in the factorization of polynomials

Specific objectives	Contents	Suggested teaching and learning activities
At the end of the unit the learner will be able :	1. Complex numbers 1.1. The commutative field of complex numbers	 Before introducing complex
 To define a complex number in algebraic form 	 Definition of a complex number Notation of the set of complex numbers Addition in C and its properties 	numbers, the teacher should make revision on properties of addition and multiplication in ²
 To calculate the sum / difference and the product of complex numbers 	 Multiplication in C, and its properties Commutative field (C +, .) Isomorphism between R and C₁={(a,0);a ∈ R} 	 The teacher should also make revision on properties of linear application before introducing the isomorphism between R and

			31
	 To determine the real and imaginary parts of a complex number To determine the conjugate and modulus of complex numbers To apply properties of conjugate and modulus of complex numbers in solving 	 Algebraic form of a complex number : real and imaginary parts conjugate and modulus of complex numbers, notation and properties 	 C₁={(a,0); a∈ } During introduction, the teacher should help learners to identify the insufficiency of set while calculating the square root of negative real numbers The teacher should prepare
-	simple equations - To represent a complex number in Argand diagram	 1.2. Geometric representation of a complex number: Location of points and vectors in a complex plane or Argand diagram. 	 various exercises to help learners to master calculations in The teacher should help learners to relate the representation of a point in Cartesian plane to the representation of complex number in complex plane or Argand diagram
-	 To calculate a square root of a complex number To solve quadratic equations in C 	 1.3.Calculations in the field of complex numbers Square root of a complex number Quadratic equations in C 	- While calculating the square root of $z = a + bi$, it is advisable to solve the system $\int x^2 - y^2 = a$
-	 To define a complex number in trigonometric form To determine a modulus and an argument of product, quotient of two complex numbers in trigonometric form To determine a modulus and an argument of power of complex number To convert a complex number from a trigonometric form to an algebraic form and vice versa To define a complex number in Exponential form 	 1.4. Trigonometric forms of complex numbers Modulus and Argument of a complex number Trigonometric form of product, and quotient of two complex numbers Power of complex number in trigonometric form DeMoivre's theorem. Changing a complex number from a trigonometric form to an algebraic form and vice versa Exponential form of a complex number 	$\begin{cases} x^2 + y^2 = \sqrt{a^2 + b^2} \\ 2xy = b \end{cases}$ Where $x + y$ i is the square root of z. Make sure that the choice of x and y depends on the sign of b - The teacher should help learners to identify that considering the sign of real part and imaginary part will facilitate to determine the position of argument of a complex number in Argand diagram

			_	Prepare various exercises relative to the changing quotient, product, power of complex numbers in different forms
_	To determine the n th roots of a complex number To represent graphically the n th roots of a unit number	 1.5. The nth root of a complex number The nth roots of a unit number Graphical representation The nth roots of a complex number. 	_	The teacher should help learners to identify that the n th roots of unit are the vertices of a regular polygon inscribed in a circle with radius $r = 1$
		1.6. Application of complex numbers		
_	To apply DeMoivre's formula in			
	calculating sine, cosine, tangent and cotangent of multiple angles of a given angle	 Calculation of sine, cosine, tangent, cotangent of multiple angles of a given angle and demonstrating the trigonometric identities by use of DeMoivre's theorem 	_	The teacher should prepare various exercises related to the application of complex numbers
—	To solve trigonometric equations and	 Linearization of trigonometric polynomials Solution of simple trigonometrical equations and 		While solving the simple
_	To Construct regular polygons with n	inequations		trigonometric equations, make
	sides	 Construction of regular polygons with n sides and 		sure that $a \cos x + b \sin x = c$ is
—	To determine the length of one side of a polygon and the length of its apothem in	determination of the length of the sides and the length of apothem in terms of the radius of the circumscribed		aiso soived
	terms of the radius of the circumscribed	circle.		
	circle.	Factorisation of polynomials in C		
_	To factorize porynomials in C			

CHAPTER II: LINEAR ALGEBRA

Duration: 28 Periods

General objective: At the end of this chapter the learner should be able:

To utilize the definitions and properties of vector space and linear functions to solve problems given in vector space \mathbb{R}^n

Specific objectives	Contents	Suggested teaching and learning activities
 At the end of the unit the learner will be able : To define the vector spaces R² and R³ To carry out operations on linear combinations To determine linear dependent and linear independent vectors To determine Generating set of vectors To determine Basis and dimension of a vector space 	 2. Linear algebra 2.1. Structure of the vector space Rⁿ Vector spaces R² and R³ Linear combination Linear dependence Linear independence Generating set of vectors Basis and dimension of a vector space. 	 The teacher should lead learners to use determinant to verify linear dependency and linear independency of vectors
 To prove that the sum of 2 sub vector spaces is also a vector space 	 2.2. Sub-vector space Definition Sum of 2 sub vector spaces theorem (Grassman theorem) Supplementary vector spaces 	 Help learners to realize that a sub vector space is also a vector space Lead learners to verify that a non empty subset of a given vector space is its subspace by use of linearity property through different exercises
 To define a linear mapping To apply the properties of a linear mapping To determine the matrix of a linear mapping To determine the kernel and image of a linear mapping 	 2.3.Linear mappings Definition Properties Matrix of a linear mapping Kernel and image of a linear mapping 	 The teacher should focus on identity, null application, and enlargement. Help learners to realize that if <i>f</i> : <i>E</i> → <i>F</i> : Linear mapping then , ker f is a subspace of E Imf is a subspace of F

$ \begin{array}{r} - & \text{To c} \\ & \text{of or} \\ - & \text{To se} \\ & \text{in } p \end{array} $	alculate a determinant of a matrix der <i>n x p</i> olve a system of <i>n</i> linear equations unknowns	 Matrices and determinants: Revision Generalization 	_	Various exercises on determination of kernel, image of a linear transformation and their dimensions are required
		– System of <i>n</i> linear equations in <i>p</i> unknowns	_	While solving systems of linear equations, it is advisable to use Gauss method and Cramer's method where possible

CHAPTER III: CALCULUS OR ANALYSIS

Duration: 98 Periods

- **General objectives:** At the end of this chapter the learner should be able:
 - To study and represent logarithmic and exponential functions and to apply them in other scientific domains
 - To apply Taylor's formula in establishing limited development of the functions with real variables
 - To calculate the integrals of functions and apply them in various domains

Specific objectives	Contents	Suggested teaching and learning activities
At the end of the unit the learner will be able :	3. Calculus(Analysis)	
 To define Neperean logarithm function To represent graphically y = ln x To solve logarithmic equations and inequations by use of properties To calculate the derivative of logarithmic functions in base e To define an exponential function in base e To study and represent graphically y = e^x 	 3.1.Logarithmic and exponential functions Neperean logarithm function: definition, properties, the number <i>e</i>, study and graphical representation of <i>y</i> = ln <i>x</i>, logarithmic equation and inequations, differentiation of ln <i>u</i> on an interval I, where <i>u</i> is differentiable on I, study of logarithmic functions in base e Exponential functions in base <i>e</i>: definition, notation, properties, study of the function <i>y</i> = <i>e</i>^x, exponential equations and inequations, differentiable on I 	 The teacher should help learners to find properties of logarithm to any base through properties of logarithm to base 10 The teacher should lead learners to establish the relation between logarithm to base a and logarithm to base e where <i>a</i> > 0, <i>a</i> ≠ 1 On the graphical

For solve exponential equations and inequations by use of properties To calculate the derivative of exponential function in base <i>a</i> . To solve logarithmic function in base <i>a</i> . To solve logarithmic equations and inequations by use of properties. To solve logarithmic equations and inequations by use of properties. To calculate the derivative of logarithmic function in base <i>a</i> . To solve logarithmic equations and inequations in base <i>a</i> . To solve logarithmic equations and inequations in base <i>a</i> . To solve logarithmic function in base <i>a</i> . To solve soponential function in base <i>a</i> . To solve apponential function in base <i>a</i> . To solve exponential equations and inequations in base <i>a</i> . To solve apponential equations and inequations in base <i>a</i> . To solve apponential equations and inequations in base <i>a</i> . To solve exponential equations and inequations in base <i>a</i> . To solve apponential equations and inequations in base <i>a</i> . To calculate the derivative of exponential functions in base <i>a</i> . To calculate the derivative of exponential functions in base <i>a</i> . To calculate the derivative of exponential functions in base <i>a</i> . To calculate the derivative of exponential functions in base <i>a</i> . To calculate the derivative of exponential functions in base <i>a</i> . To calculate the derivative of exponential functions in base <i>a</i> . To calculate limits of indeterminate forms: I [*] , 0 ⁰ , ∞ ⁰ , ∞ [*] . Itimits are to be considered. ¹ , ¹ , ¹ = e and ¹ , ¹ , ¹ , ¹ = e			
inequations by use of properties-Exponential functions in base a : definition, notation, properties, study of $y = a^x$, exponential equations and inequations, differentiation of a^u where u is differentiable on Iexponential expressions through various exercises; function study of logarithmic and exponential functions in base a -To study and represent graphically $y = a^x$ -Study of logarithmic and exponential functions in base a -While dealing with limits of indeterminate forms: $1^w, 0^0, \infty^0, \infty^w$ -To calculate the derivative of exponential functions $y = a^x$ and $y = e^x$ -Study of logarithmic and exponential functions in base a -To calculate the derivative of exponential functions $y = a^x$ and $y = e^x$ -Study of logarithmic forms: $1^w, 0^0, \infty^0, \infty^w$ -To study and represent graphically logarithmic and exponential functions in base a -Exponential functions in base a -To study and represent graphically logarithmic and exponential functions in base a -Exponential functions in base a -To study and represent graphically logarithmic and exponential functions in base a -Exponential functions in base a -To calculate limits of indeterminate forms: $1^w, 0^0, \infty^0, \infty^w$ Limits of indeterminate forms: $1^w, 0^0, \infty^0, \infty^w$ Limits of indeterminate forms: $1^w, 0^0, \infty^0, \infty^w$ -	 To solve exponential equations and inequations by use of properties To calculate the derivative of exponential functions in base e To define a logarithmic function in base <i>a</i> To study and represent graphically y = log^x_a To solve logarithmic equations and 	- Logarithmic functions in base <i>a</i> (where $a > 0, a \ne 1$): definition, properties, study of the function $y = \log_a x$, change of base, logarithmic equations and inequations in base <i>a</i> , differentiation of $\log_a u$ where <i>u</i> is differentiable on I	representation of $y = \ln x$, the illustration of $\lim_{x\to 0^+} \ln x = -\infty$, $\lim_{x\to +\infty} \ln x = +\infty$, $\ln x < 0$ for $0 < x < 1$ and $\ln x > 0$ for x > 1 is suggested - The teacher should lead learners to evaluate limits, to differentiate, to solve equations and inequations involving logarithmic and
- To study and represent graphically $y = a^{x}$ - To solve exponential equations and inequations in base <i>a</i> by use of properties - To calculate the derivative of exponential functions in base <i>a</i> - To establish the relationship between exponential functions $y = a^{x}$ and $y = e^{x}$ - To study and represent graphically logarithmic and exponential functions in base <i>a</i> - To calculate limits of indeterminate forms: $1^{\infty}, 0^{0}, \infty^{0}, \infty^{\infty}$ - Limits of indeterminate forms: $1^{\infty}, 0^{0}, \infty^{0}, \infty^{\infty}$ - Limits of indeterminate forms: $1^{\infty}, 0^{0}, \infty^{0}, \infty^{\infty}$	 inequations by use of properties To calculate the derivative of logarithmic functions in base <i>a</i> To define an exponential function in base <i>a</i> 	- Exponential functions in base a : definition, notation, properties, study of $y = a^x$, exponential equations and inequations, differentiation of a^u where u is differentiable on I Relationship between exponential functions in base, a , and in	exponential expressions through various exercises; function study of logarithmic and exponential functions is also required
- To calculate the derivative of exponential functions in base a - To establish the relationship between exponential functions $y = a^x$ and $y = e^x$ - To study and represent graphically logarithmic and exponential functions in base a - To calculate limits of indeterminate forms: $1^{\infty}, 0^0, \infty^0, \infty^{\infty}$ - Limits of indeterminate forms: $1^{\infty}, 0^0, \infty^0, \infty^{\infty}$	 To study and represent graphically y = a^x To solve exponential equations and inequations in base <i>a</i> by use of properties 	 Relationship between exponential functions in base a, and in base e, Study of logarithmic and exponential functions in base a 	 While dealing with limits of indeterminate forms: 1[∞], 0⁰, ∞⁰, ∞[∞], the teacher should prepare various exercises for each case. The
$\begin{array}{c} \text{logarithmic and exponential functions in} \\ \text{base } a \\ \text{- To calculate limits of indeterminate} \\ \text{forms: } 1^{\infty}, 0^{0}, \infty^{0}, \infty^{\infty} \end{array} \qquad - \text{Limits of indeterminate forms: } 1^{\infty}, 0^{0}, \infty^{0}, \infty^{\infty} \end{array} \qquad $	 To calculate the derivative of exponential functions in base <i>a</i> To establish the relationship between exponential functions y = a^x and y = e^x To study and represent graphically 		use of Neperean logarithm and Hospital's rule is required .Particularly, the following limits are to be $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = a$
	 logarithmic and exponential functions in base <i>a</i> To calculate limits of indeterminate forms: 1[∞], 0⁰, ∞⁰, ∞[∞] 	– Limits of indeterminate forms: $1^{\infty}, 0^{0}, \infty^{0}, \infty^{\infty}$	considered: $\lim_{x \to 0} (1+x)^x = e$ and $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$

-	To apply Taylor's formula in limited development of functions To calculate the approximated numerical values of functions in a given point	 3.2. Taylor and Mac-Laurin polynomials Taylor's formula (proof not required) Application of Taylor's formula Taylor's polynomial of sin x, cos x, e^x, ln(1+x) in the neighborhood of x = 0 Calculation of sine, cosine of an angle (proof required) Taylor's polynomial for given functions, numerical values of functions. Limited Development of functions. 	_	Various exercises on application of Taylor's and Mac-Laurin's formulae are required Teacher should make revision on derivatives before introducing the concept of differential of functions
-	To define a differential of function To calculate the differential of various functions	 3.3. Differential calculus Definition, differential of a sum, product, quotient of differentiable functions. Differential of a function in square roof form Differential of functions with rational powers Differential of composite functions Differential of trigonometric functions Differential of inverse trigonometric functions Differential of exponential functions Differential of logarithmic functions Application of differentials 	_	Prepare and give various exercises on differential of different types of functions
	To define a primitive function To apply immediate primitives in exercises To calculate integrals by decomposition method To calculate integrals by substitution method	 3.4. Primitive Functions Definition Properties: continuity of primitive of a function, set of primitive functions, immediate primitives Techniques of integration: integration by decomposition: integration of a sum of functions, integration of a product of functions by a real number integration by change of variable, integration by parts 	_	The teacher should lead learners to calculate indefinite integrals by decomposition, by change of variable and by parts through various exercises

-			
-	To calculate integrals by parts	 Some special integrals: Rational functions: the general rule (proof not required) based on the decomposition of proper fraction into a sum of simple fractions, Integration of functions given in improper fractions, Integration of irrational functions: f(x) = \sqrt{ax+b} 	- While integrating, the teacher should lead learners
-	To calculate integrals of rational functions To calculate integrals of irrational functions	$f(x) = \sqrt{ax + b},$ $f(x) = \sqrt{\frac{ax + b}{cx + d}},$ $f(x) = \sqrt{a^2 - x^2}$	to change variable as follow: $\sqrt{ax+b}, t^2 = ax+b$ $\sqrt{\frac{ax+b}{cx+d}}, t^2 = \frac{ax+b}{cx+d}$
-	To calculate integrals of trigonometric functions	 Integration of trigonometric functions: odd functions in cos x, odd functions in sin x. 	$\sqrt{a^2 - x^2}$, $x = a \sin t$ - While integrating, odd functions in $\cos x$ we change variable by using $t = \sin x$.
-	To define a definite integral To calculate definite integrals by applying their properties	 3.5. Definite integrals Definition Properties: Linearity, Permutation of bounds Particular case where bounds are equal, Additivity of integration on intervals (Chasles relation), Positivity , Mean value theorem Methods of integration, 	for odd functions in sin x we change variable by using $t = \cos x$.
-	To calculate the area of a plane surface by use of definite integrals To calculate the volume of a solid of revolution by use of definite integrals	 Applications definite integrals : Calculation of area of a plane surface Calculation of volume of a solid of revolution Calculation of the length of curved surface 	 The teacher should lead learners to calculate definite integrals by decomposition, by change of variable and by parts through various exercises
_	To calculate the length of a curved		– While calculating the area,

surface by use of definite integrals	 volume and the length, the teacher should also lead learners to: determine the area of square, rectangle, trapezium, triangle, and circle determine the volume of sphere, cylinder and cone determine the circumference of a circle

CHAPTER IV: DIFFERENTIAL EQUATIONS

- ***** Duration: 21 Periods
- General objective: At the end of this chapter the learner should be able:
 To solve simple differential equations of 1st and 2nd order with constant coefficients

Specific objectives	Contents	Suggested teaching and
		ical ming activities
At the end of the unit the learner will be	4. Differential equations	
able :	4.1. Introduction	– The teacher should help
– To define a differential equation of the	 Definition and terminology 	learners to distinguish the 1 st
1 st order	– Examples of differential equations of the 1 st and second	and 2 nd order of differential
- To define a differential equation of the	order	equations through various
2 nd order		examples
	4.2. Differential equations of the 1st order	– The teacher should prepare
 To solve differential equations with 	 Differential equations with separable variables 	exercises on verifying
separable variables	 Simple homogeneous differential equations 	whether a given function is a
 To solve simple homogeneous 	– Linear differential equations of the 1 st order.	solution of a given differential
differential equations		equation
– To solve linear differential equations of		– In solving linear differential

	the 1 st order		equations of the 1 st order it is
			advisable to find out the
_	To solve linear differential equations of	4.3. Differential equations of the 2 nd order	integrating factor leading to
	the 2 nd order with constant coefficient	 Linear equations with constant coefficients: 	differential equations with
		 The right hand side is equal to zero 	separable variables
		 The right hand side is a polynomial function 	– The teacher should prepare
		 The right hand side is a trigonometric function 	various exercises on linear
		 The right hand side is an exponential function 	differential equations of the
			2 nd order with constant
			coefficients to be studied

CHAPTER V: CONICS

Duration: 21 Periods

✤ General objective: At the end of this chapter the learner should be able:

To determine and establish equations of a conic

Specific objectives	Contents	Suggested teaching and learning activities
 At the end of the unit the learner will be able : To define a parabola To determine the Cartesian and parametric equations of a parabola 	 5.Conics 5.1. The parabola: Definition: focus and directrix of a parabola Cartesian and parametric equations Tangents, axis of symmetry 	 While defining analytically each conic it's better to talk about vertices, foci,
 To find out the tangents, axis of symmetry of a parabola 	5.2. The ellipse	directrices and axes
– To define an ellipse	 Definition: foci and directrices of an ellipse 	
 To determine the Cartesian and parametric equations of an ellipse To find out the tangents, axis and centre 	 Cartesian and parametric equations Tangents, axes and centre of symmetry. 	
of symmetry of an ellipse	5.3. The hyperbola	

	To define an hyperbola To determine the Cartesian and parametric equations of an hyperbola To find out the asymptotes, tangents, axes and centre of symmetry of an hyperbola To determine an eccentricity of a conic To determine the nature of a conic based on its eccentricity	 Definition: foci and directrices of an hyperbola Cartesian and parametric equations Asymptotes, tangents, axes and centre of symmetry 5.4. Conics and eccentricity Eccentricity Nature of a conic 	_	The teacher should help learners to determine the type of a given conic considering the value of eccentricity e: Ellipse :0 <e <1<br="">Hyperbola: e>1 Parabola: e=1</e>
_	To define and represent graphically a point in polar coordinates To convert polar coordinates in Cartesian coordinates and vice versa To determine the equations of straight line, circle and conics in polar coordinates	 5.5. Conics and polar coordinates Definition of polar coordinates Conversion of polar coordinates in Cartesian coordinates and vice versa Straight line, circle and conics in polar coordinates 		• Circle : e=0 The teacher should prepare and give various exercises on conversion of polar coordinates in cartesian coordinates and vice versa

40

CHAPTER VI: PROBABILITY

- ***** Duration: 14 Periods
- **General objective:** At the end of this chapter the learner should be able: To calculate and interpret the parameters of a random variable

Specific objectives	Contents	Suggested teaching and
		learning activities
At the end of the unit the learner will be	6. Probability	
able :		 While calculating
	6.1.Discrete and finite Random variables	mathematical expectation,
– To establish the table of distribution of	 Distribution of probability 	variance and standard
probability		deviation, the teacher should
– To calculate Mathematical expectation,	– Mathematical expectation, variance, standard deviation	help learners to be familiar
variance, standard deviation of a random		with the use of the table of
variable		distribution of probability
 To apply Bernoulli's law in solving 	– The Law of Bernoulli: Binomial distribution and its	through various exercises
various problems	properties	 The teacher should lead
 To apply Poisson's law in solving 	 Uncountable infinite discrete case: law of Poisson 	learners to represent the
various problems		distribution of probability by
		use of bar diagram through
		exercises
	6.2.Continuous Random variables :	
– To determine a function of density of	 Continuous random variable 	– In applying Bernoulli's law,
probability of a continuous random	 Functions of density of probability 	the teacher should give
variable	– Mathematical expectation, variance and standard deviation.	problems involving success
- To prove if a given function is a density		or failure.
of probability on a given interval		
– To calculate mathematical expectation,		
variance, standard deviation of a		
continuous random variable		

PROPOSAL OF LESSONS DISTRIBUTION FOR SENIOR 6

First term

Weeks	Topics	Number of periods
1-4	Complex numbers	28
5-8	Logarithms and exponential functions	28
9	Taylor and Mac-Laurin series	7
10	Differential calculus and primitive functions	7
11-12	Revision and Exams	14
Total: 12 weeks		84

Second term

Weeks	Topics	Number of periods
1-4	Primitive functions	28
5-8	Definite integrals	28
9-10	Differential equations	14
11-12	Revision and Exams	14
Total: 12 weeks		84

Third term

Weeks	Topics	Number of periods
1	Differential equations	7
2-5	Linear algebra	28
6-8	Conics	21
9-10	Probability	14
11-12	Revision and Exams	14
Total: 12 weeks		84

VIII. BIBLIOGRAPHY

- 1. Arthur Adam, Freddy Goossens: Francis Lousberg *Mathématisons 65*, DeBoeck, 3^e edition 1991
- 2. Christopher Claphan and James Nicholson: Concise Dictionary of Mathematics, Oxford University Press, Fourth Edition, 2009
- 3. Curriculum Development Center, Ministry of Education Malaysia, Integrated Curriculum for Secondary School, Mathematics form 4 and 5 Ministry of Education Malaysia, 2006
- 4. DPES-RWANDA *Coniques, Livre de l'élève,* IMPRISCO – Kigali, 1988
- DPES-RWANDA *Complexes 5^{eme}, Livre de l'élève,* IMPRISCO – Kigali, Février 1990
- 6. J.K.Backhouse, SPT Houldsworth B.E.D. Cooper and P.J.F.Horril *Pure mathematics 1*, Longman, Third edition 1985, fifteenth impression 1998
- 7. J.K.Backhouse, SPT Houldsworth B.E.D. Cooper and P.J.F.Horril *Pure mathematics* 2, Longman, Third edition 1985, fifteenth impression 1998
- John A. Grahan Robert. Sorgenfrey. *Trigonometry with application*, Hounghton Mifflin Campany, Boston 1993
- Manjeet Singh: *Pioneer Mathematics*, Dhanpat Rdi & Co. (Pvt) Ltd Educational and Technical Publishers 2003.

10. MINEDUC/NCDC:

Mathematics Programme for Advanced Level Kigali, June 1999

- 11. Richard G. Brown, David P. Robbins Advanced Mathematics: A precalculus course Houghton Miffin Company, Boston 1994
- 12. Shampiyona Aimable Mathémaiques 6 Kigali, Juin 2005
- 13. Trevor Johnson and Hugh Neil *Teach yourself Mathematics*, UK, 2003
- 14. Uganda National Examination Board Uganda Advanced Certificate of Education Regulation and Syllabuses 2009-2013

44